RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2011

FIRST YEAR

MATHEMATICS (Honours)

Date : 16/12/2011 Time : 11am - 3 pm

Paper : I

Full Marks : 100

[Use separate answer-books for each group]

Group-A

[Throughout, \mathbb{R} and \mathbb{N} respectively denote the set of all real numbers and natural numbers]

1.	An	nswer any five questions:	5x5
	a)	i) For three subsets <i>A</i> , <i>B</i> , <i>C</i> of a set <i>S</i> , if $(A \cap C) \cup (B \cap C') = \phi$, prove that $A \cap B = \phi$ where <i>C'</i> is the complement of C in <i>S</i> .	
		ii) Let $f: X \to Y$ be a function and let $f(A \cap B) = f(A) \cap f(B)$ for all non- empty subsets A and B of X. Prove that f is injective.	3+2
	b)	i) Define a bijective map from [0,1] onto $[0,1] \cup \{\sqrt{2}, \sqrt{3}\}$. Give justifications.	
		ii) Find the order of the permutation $(1234)(56) \in S_6$.	3+2
	c)	i) Define ρ on $\mathbb{R} - \{0\}$ by ' $x \rho y$ iff $\frac{x}{y} > 0$; $x, y \in \mathbb{R} - \{0\}$ '. Show that ρ is an	
		equivalence relation. Find all equivalence classes.ii) Define an equivalence relation on {1,2,3}.	+2)+1
	d)	Let $G = \{(a,b): a, b \in \mathbb{R}, a \neq 0\}$. Define a binary operation ' \circ ' on <i>G</i> by $(a,b) \circ (c,d) = (ac,b+d)$ for all $(a,b), (c,d) \in G$. Show that (G,\circ) is a group. Also prove that <i>G</i> has no element of order 3.	4+1
	e)	Prove that the intersection of any family of subgroups of a group G is a subgroup of G . Give an example to show that the result may not hold in case of union.	3+2
	f)	Prove that every subgroup of a cyclic group is cyclic.	5
	g)	Consider the group $\mathbb{R} \times \mathbb{R} = \{(a,b): a, b \in \mathbb{R}\}$ under componentwise addition of real numbers. Let $H = \{(x, 3x) \in \mathbb{R} \times \mathbb{R}\}$. Show that <i>H</i> is a subgroup of $\mathbb{R} \times \mathbb{R}$ and then show that <i>H</i> represents geometrically all points on the line $y = 3x$. Show that all the points of the coset $(2, 5) + H$ are on the straight line $y = 3x - 1$.	2+1+2
	h)	State and prove Lagrange's theorem on finite groups.	5
2.	An a)	nswer any five questions: i) State Archimedean property of real numbers and use it to show that	5x5
	,	$\lim_{n\to\infty}\frac{1}{n}=0.$	3
		ii) Let <i>S</i> and <i>T</i> be two non-empty bounded subsets of \mathbb{R} and $U = \{x + y; x \in S, y \in T\}$. Prove that $\inf U = \inf S + \inf T$.	2

b)	i)	Let $S = (0,1]$ and $T = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. Show that $S - T$ is an open set.	2
	ii)	Prove that the interior $Int S$ of a set S is an open set.	3
c)	i)	Determine whether the set $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \bigcup \left\{1 + \frac{1}{n} : n \in \mathbb{N}\right\}$ is closed.	2
	ii)	Prove that the derived set of a set $S(\subset \mathbb{R})$ is a closed set.	3
d)	i)	Prove that the complement of an open set in \mathbb{R} is a closed set.	
	ii)	Show that the union of a finite number of closed sets in \mathbb{R} is a closed set.	5
e)	i)	Define an uncountable set.	1
	ii)	Show that the interval $(0,1)$ is uncountable.	4
f)	i)	Let the sequence $\{x_n\}$ be defined inductively by $x_1 = 1$, $x_{n+1} = \frac{1}{4}(2x_n + 3)$ for	
		$n \ge 1$. Show that $\{x_n\}$ converges and find the limit.	3
	ii)	Prove that every Cauchy sequence is bounded.	2
g)	Det	ine a subsequence of the sequence $\{x_n\}$ of real numbers. Prove that every	
	boı	inded sequence of real numbers has a convergent subsequence.	1+4
h)	i)	Prove that if a sequence $\{x_n\}$ is convergent then $\lim x_n = \underline{\lim} x_n$.	2
	ii)	Discuss existence of $\lim_{x\to 0} \left(\cos\frac{1}{x}\right)$.	3

Group-B

3. Answer **any five** questions :

- a) Show that the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is right angled if $(a+b)(al^2 + 2hlm + bm^2) = 0$.
- b) A circle is drawn through the focus of the parabola $\frac{2a}{r} = 1 + \cos\theta$ to touch it at the point $\theta = \alpha$. Show that its equation is $r\cos^3\frac{\alpha}{2} = a\cos\left(\theta \frac{3\alpha}{2}\right)$.
- c) Reduce the equation $3x^2 + 10xy + 3y^2 2x 14y 13 = 0$ to its canonical
- form. Find its nature and length of the latus rectum.
- d) Show that the pole of any tangent to the hyperbola $xy = c^2$ with respect to the circle $x^2 + y^2 = a^2$ lies on concentric and similar hyperbola.

e) The normal at a variable point *P* on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ cuts the diameter *CD* conjugate to *CP* at *Q*. Find the locus of *Q*.

f) Prove the following by vector method:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C},$$

symbols are of usual meaning.

5

 $5 \times 5 = 25$

5

5

5

5

- g) If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors then express $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
- h) Solve for \vec{r} , $K\vec{r} + \vec{r} \times \vec{a} = \vec{b}$ where *K* is a given nonzero scalar and \vec{a}, \vec{b} are two given vectors.
- 4. Answer **any five** questions:
 - a) Obtain the differential equation of all circles each of which touches the axis of *x* at the origin.
 - b) Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1, \ \lambda \text{ is the parameter.}$
 - c) Reduce the differential equation $xp^2 2yp + x + 2y = 0\left(p = \frac{dy}{dx}\right)$ to

Clairaut's form by transforming $x^2 = u$ and y - x = v. Find the general solution and singular solution (if it exists).

d) Solve:
$$y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = y^2 \log y$$
. 5

e) Solve, by the method of variation of parameters, the equation
$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}.$$

f) Solve by method of undetermined coefficients $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$.

g) Solve;
$$(1+2x)^2 \frac{d^2 y}{dx^2} - 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$$
. 5

h) Show that
$$\sin x \frac{d^2 y}{dx^2} - \cos x \frac{dy}{dx} + 2y \sin x = 0$$
 is exact and solve it completely. 5

5

5

5x5 = 25

5

1 + 3 + 1

5

5